Effect of heat treatment on H2O2/HCl etched pure titanium dental implant: An in vitro study
نویسندگان
چکیده
BACKGROUND Surface chemistry of dental implant plays an important role in osseointegration. Heat treatment might alter surface chemistry and result in different biological response. The aim of this study was to investigate the roles of heat treatment of H2O2/HCl-treated Ti implants in cell attachment, proliferation and osteoblastic differentiation. MATERIAL/METHODS Sandblasted, dual acid-etched and H2O2/HCl heat-treated discs were set as the control group and sandblasted, dual acid-etched H2O2/HCl-treated discs were the test group. Both groups' discs were sent for surface characterization. MC3T3-E1 cells were seeded on these 2 groups' discs for 3 hours to 14 days, and then cell attachment, cell proliferation and cell differentiation were evaluated. RESULTS Scanning electron microscope analysis revealed that the titanium discs in the 2 groups shared the same surface topography, while x-ray diffraction examination showed an anatase layer in the control group and titanium hydride diffractions in the test group. The cell attachment of the test group was equivalent to that of the control group. Cell proliferation was slightly stimulated at all time points in the control group, but the alkaline phosphatase (ALP) activity and osteocalcin (OC) production increased significantly in the test group compared with those in the control group at every time point investigated (p<0.05 or p<0.01). Moreover, the osteoblastic differentiation-related genes AKP-2, osteopontin (OPN) and OC were greatly up-regulated in the test group (p<0.05 or p<0.01). CONCLUSIONS The results implied that surface chemistry played an important role in cell response, and H2O2/HCl etched titanium surface without subsequent heat treatment might improve osseointegration response.
منابع مشابه
CORROSION BEHAVIOR OF BIOACTIVATED TITANIUM DENTAL IMPLANT USING DIFFERENT CHEMICAL METHODS
At the past, damaged tissue was removed from the body of patients. But now tissue regeneration using scaffolds and implants are used to repair the damaged tissue and organs. Besides of the mechanical properties of metallic biomaterials, they suffer from bioinertness. Using some surface treatment techniques, the bioactivity and also corrosion resistance of titanium implants could be improved. In...
متن کاملEvaluation of the Effect of Zirconia and Titanium Abutments on Microleakage of Implant-Abutment Interface Under Oblique Cyclic Loading In Vitro
Background and Aim: Oral bacteria can proliferate in the implant-abutment interface (IAI) and cause inflammation in the peri-implant tissues and adjacent bone. This study aimed to assess the effect of zirconia and titanium abutments on the microleakage of the IAI under oblique cyclic loading conditions. Materials and Methods: In this in-vitro study, 12 implant-abutment assemblies with zirconia...
متن کاملEffect of Photodynamic Therapy Using Toluidine Blue on Eikenella corrodens and Aggregatibacter actinomycetemcomitans Biofilms Adhered to Titanium Discs: An In Vitro Study
Background and aim: Antimicrobial photodynamic therapy (aPDT) has been suggested as a novel technique for decontamination of exposed implant surfaces. We aimed to evaluate the effect of aPDT on sandblasted, large-grit, acid-etched (SLA) titanium discs contaminated with Eikenella corrodens (Ec) and Aggregatibacter actinomycetemcomitans (Aa). Materials and methods: In this in-vitro study, twenty...
متن کاملIn vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment.
The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifica...
متن کاملAdult Stem Cells Properties in Terms of Commitment, Aging and Biological Safety of Grit-Blasted and Acid-Etched Ti Dental Implants Surfaces
Titanium (Ti) is one of the most widely used biomaterials for manufacturing dental implants. The implant surface properties strongly influence osseointegration. The aim of the present study was to in vitro investigate the characteristics of Ti dental implants in terms of mutagenicity, hemocompatibility, biocompatibility, osteoinductivity and biological safety. The Ames test was used to test the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2012